
K. BADDARI A. ABASSOV

EQUATIONS DE LA PHYSIQUE MATHEMATIQUE APPLIQUEES

Ce livre formalise le lien entre le caractère mathématique et certains phénomènes physiques correspondants. Il décrit l'approche des phénomènes physiques par les équations de la physique mathématique.

Il met l'accent sur le rôle pédagogique en détaillant autant que possible les démonstrations des théorèmes et des concepts mathématiques nécessaires pour établir des modèles physiques à des processus déterminés. Il traite des équations relatives à la simplification de problèmes et leurs solutions générales.

INTRODUCTION

L'objectif du cours des équations de la physique mathématique appliquées est de fournir à l'étudiant les outils mathématiques utilisés dans les cours de physique, géophysique, mécanique, électronique et des autres sciences techniques. L'enseignement de ces disciplines repose sur la modélisation des phénomènes complexes aux moyens d'équations mathématiques. Il s'agit alors, de formuler mathématiquement des lois sur des processus physiques et exploiter l'interprétation de ces équations pour illustrer des phénomènes physiques observés et mesurés.

Le phénomène physique est un ensemble de variations liées par des rapports de causalité que subissent des corps déterminés dans le temps et dans l'espace. La physique mathématique apprécie, dans ce cas, toutes les variations quantitatives se manifestant dans des phénomènes physiques. Elles établissent des liaisons régulières et des rapports de cause à effet déterminés dans la variation des grandeurs observées. Elle permet de construire un schéma conventionnel à l'aide d'équations mathématiques traduisant les caractéristiques du processus et permettant de dégager des lois fondamentales, ainsi que les détails complémentaires du phénomène étudié. La mise en œuvre des équations de la physique mathématique a un objectif pratique et a à fournir des méthodes d'analyse des lois de la nature. Ces dernières qui gouvernent les phénomènes magnétiques, électriques, électromagnétiques, mécaniques, électromécaniques, hydrodynamiques et autres sont soumises à une analyse mathématique suivie d'une vérification expérimentale. Les problèmes mathématiques posés, à cet effet, contiennent beaucoup d'éléments communs et constituent l'objet de la physique mathématique.

Les disciplines caractérisant ce domaine de la science sont les mathématiques. Cependant, la problématique est fortement liée aux problèmes de la physique, ayant une certaine spécificité.

Les équations relatives à la physique mathématique sont très nombreuses. L'objet de cet ouvrage considère les équations de la physique mathématique appliquées et basées surtout sur les équations différentielles ordinaires. L'étude de chaque équation commence par la formulation d'un problème physique simple conduisant à une équation d'un type donné. Une attention particulière est donnée à la problématique mathématique et sa relation avec l'interprétation physique du phénomène étudié.

Chaque chapitre est limité au strict niveau nécessaire à la compréhension des définitions des principes et des théorèmes accompagnés d'exercices d'application. Ces derniers ont pour but essentiel l'apprentissage effectif des éléments introduits dans la théorie.

Cet ouvrage contient l'outil qui permet à l'étudiant des sciences et technologies et des sciences physiques d'assimiler les concepts fondamentaux de l'application des équations de la physique mathématique devenues un élément essentiel dans la formation des licenciés, des masters et doctorants. Les étudiants tireront de cet ouvrage les démarches à suivre pour la compréhension des équations de la physique mathématique et la façon d'assimiler la physique sous-jacente.

Nous tenons à remercier le Dr. M. Hedibel pour ses conseils appréciés.

Table des matières

Introduction	05
Chapitre I. Equations de la physique mathématique	
I.1 Classification des équations	07 07
I.1.2 Equation linéaire homogène de premier ordre	07 09
I.1.3 Types d'équations du second ordre	10 10
I.2 Transformations des équations de deuxième ordre	12 19
I.2.1 Invariance du type d'équation	21 34
I.2.2 Forme canonique	37 40 40
I.2.3 Solution générale	40 42 43
I.3 Equations principales de la physique mathématique	46 49
I.4 Position des problèmes de la physique mathématique	1)
I.5 Problèmes pour les équations hyperboliques	69
I.6 Problèmes pour les équations paraboliques	75 79
I.7 Problèmes pour les équations elliptiques	79 83
I.8 Problème correct	84 87
I.9 Problèmes non homogènes	88 95
I.10 Fonction delta de Dirac	99
I.11 Exercices	109
Chapitre II. Equations hyperboliques	109 109 111
II.1 Equation de vibrations d'une corde. Solution de d'Alembert	111 114 116
II.2 Equation hyperbolique à deux variables indépendantes	119 120
II.3 Equation d'onde	124 124 126
II.3.1 Formule de Poisson	126

	127
II.3.2 Ondes cylindriques	127
II.3.3 Equation d'onde non homogène	127
	129
II.3.4 Source ponctuelle	131
II.4 Problème de Cauchy pour la propagation du son et des petites vibrations de gaz	131
······	134
II.5 Formule de Kirchoff	136
II.6 Exercices	
	171
Chapitre III. Méthode de Fourier	171
	172
III.1 Problème de Sturm – Liouville	177
III.1.1 Position du problème. Notions générales	185
III.1.2 Propriétés des valeurs propres	
	203
III.2 Schéma général de la méthode de Fourier	204 207
III.2.1 Equation hyperbolique	207
	210
III.2.2 Equation parabolique	210
	210
III.3 Vibrations propres d'une corde finie	211
	211
III.4 Notions sur la solution généralisée	213 213
III.5 Convenance du problème mixte	219
	221
III.5.1 Intégrale de l'énergie	223
	225
III.5.2 Convenance du problème	
III.6 Intégrale de Fourier	
III.7 Transformée de Fourier	249
	251
III.8 Problème non homogène	253
III.8.1 Loscillations forcés d'une tige aux extrémités fixées	261
	264
III.8.2 Oscillations forcées d'une tige aux extrémités mobiles	273
	274 274
III.9 Exercices	279
	286

	293
Chapitre IV. Equations paraboliques	294
	301
IV.1 Premier problème aux limites. Théorème du maximum et du minimum	304
	309
IV.1.1 Position du problème	318
W. 1.2. C. L. C	323
IV.1.2 Solution du premier problème aux limites de l'équation de la chaleur	323
IV.2 Problème de Cauchy	326 330
IV.3 Exercices	
	335
Chapitre V. Equations elliptiques	335
V.1 Employ de Louise	336
V.1 Equation de Laplace	337
V. Commula de Casas Demáscartation intégrale d'una fanation subituaire	338
V.2 Formule de Green. Représentation intégrale d'une fonction arbitraire	339 345
V.3 Propriétés principales des fonctions harmoniques	343
v.5 Proprietes principales des fonctions narmoniques	246
V.4 Problèmes principaux de l'équation de Laplace	346
	349 350
V.4.1 Problème intérieur de Dirichlet	353
	356
V.4.2 Problème intérieur de	358
Neumann	330
V.4.3 Troisième problème aux limites	362
	371
V.5 Fonction de Green de l'opérateur de Laplace	377
	383
V.5.1 Fonction de Green du problème de Dirichlet	395
	395
V.5.2 Propriétés de la fonction de Green	398
	399
V.6 Solution du problème de Dirichlet pour une	400
sphère	400
V.7 Problème extérieur de Dirichlet pour une boule	401
V.8 Comportement des dérivées des fonctions harmoniques à l'infini	401
V.9 Théorème d'unicité du problème de Neumann	402
•	405
V.10 Exercices	405
······································	406 406
	400
	407
	408
	408
	408

Chapitre VI. Théorie du potentiel	409
VI.1 Potentiel de volume et des couches simples et doubles	410 412
VI.2 Intégrales impropres dépendant d'un paramètre	419 423
VI.3 Potentiel de volume	427
VI.4 Surface de Liapounov	431 433
VI.5 Potentiel d'une couche double	
VI.6 Potentiel d'une couche simple	
VI.7 Force d'attraction gravitationnelle et son potentiel	
VI.7.1 Force d'attraction et son potentiel	
VI.7.2 Dérivées du potentiel gravitationnel	
VI.7.3 Expressions intégrales générales des dérivées du potentiel gravitationnel	
VI.7.4 Equations de Laplace et de Poisson	
VI.7.5 Formule de Green	
VI.7.6 Formule de Green pour les fonctions harmoniques	
VI.7.7 Problèmes de Dirichlet et de Neumann	
VI.7.8 Potentiel d'attraction d'une couche sphérique et d'une sphère	
VI.8 Problèmes de la prospection électrique	
VI.9 Ondes élastiques et ondes électromagnétiques	
VI.9.1 Ondes élastiques dans un milieu homogène	
VI.9.2 Ondes électromagnétiques dans un milieu conducteur	
VI.10 Exercices	

Chapitre VII. Quelques fonctions spéciales

VII.1 Fonctions de Bessel
VII.1.1 Matérialisation physiques de l'équation de Bessel
VII.1.2 Oscillations d'un fil pesant
VII.1.3 Oscillations d'une membrane circulaire
VII.1.4 Equation de diffusivité
VII.1.5 Détermination de la fonction de Bessel de première espèce
VII.1.6 Fonction de Bessel de deuxième espèce
VII.1.7 Equation différentielle conduisant à l'équation de Bessel. Fonction de Bessel de
troisième espèce
VII.1.8 Fonction génératrice de la fonction Bessel
VII.1.9 Propriétés de la fonction de Bessel de première et troisième espèces
VII.1.10 Formules intégrales de la fonction de Bessel de première et troisième espèces
VII.1.11 Intégrale de Weber-Lipchitz
VII.1.12 Orthogonalité de la fonction de
Bessel
VII.1.14 Fonctions de Hankel
VII.1.15 Integrale de Fourier-Bessel
VII.1.16 Exercices
VII.2 Polynômes de Legendre
VII.2.1 Fonction génératrice et polynôme de Legendre
VII.2.2 Formule de récurrence
VII.2.3 Equation de Legendre
VII.2.4 Orthogonalité des polynômes de Legendre
VII.2.5 Norme des polynômes de Legendre

VII.2.6 Zéros des polynômes de Legendre
VII.2.7 Limites des polynômes de Legendre
VII.2.8 Exercices
VII.3 Polynômes de Chebychev-Hermite
VII.3.1 Formule différentielle
VII.3.2 Formules de récurrence
VII.3.3 Equation de Chebychev-Hermite
VII.3.4 Norme des polynômes $H_n(x)$
VII.3.5 Fonction de Chebychev- Hermite
VII.4 Polynômes de Laguerre
VII.4.1 Equation différentielle de Laguerre. Polynômes de Laguerre
VII.4.2 Propriétés des polynômes de Laguerre
VII.4.3 Polynômes orthogonaux et leurs propriétés
VII.5 Exercices
VII.6 Fonctions sphériques
VII.6.1 Exemple d'application des fonctions sphériques
VII.6.2 Analyse sphérique des données géophysiques
VII.7 Exercices
Bibliographie
Table des matières