Résumé

La fiabilité de prévision des séismes peut être améliorée par une compréhension des processus physiques qui conduisent au déclenchement de ce phénomène. Le but de ce livre est la description des causes des séismes ainsi que les résultats obtenus au laboratoire et dans les régions séismoactives sur la rupture des roches.

Ce livre décrit les paramètres principaux des foyers séismiques, les modèles récents de préparation des séismes et les différentes formes de précurseurs des séismes. Il est destiné aux géophysiciens, physiciens, géologues, chercheurs et peut être utile aux différents lecteurs intéressés par les tremblements de terre.

Table des matières

Chapitre I : Effets et causes des séismes	
I.1- Les effets des séismes	
I.2-Classification des séismes 1	2
I.3-L'agitation microsismique15	5
I.4-Les séismes artificiels	7
I.5-Tectonique des plaques	1
I.6-Failles transformantes	33
I.7-Distribution géographie des séismes	5
I.8-Sismicité de la zone méditerranéenne	39
I.9-Cas de l'Algérie	12
I.10-Détermination de l'épicentre	15
I.11-Les séismographes	18
I.12-Les répliques5	55
I.13-effets des séismes sur les constructions5	58
I.14-Conception parasismique6	51
Chapitre II : Mode de propagation des ondes sismiques	
II.1-Théorie d'élasticité	
II.1.1-Les constantes élastiques des roches	5
II.1.1.1-Loi de Hooke II.1.1.2-Relation entre différents coefficient statiques d'élasticité	,

II.2.1-ondes de volume	74
II.2.1.1-ondes primaires(P) ou longitudinales	74
II.2.1.2-ondes secondaires ou transversales	
Encadré II.1 Mouvement ondulatoire	77
II.2.2-Ondes de surface	78
Encadré II.2-Déplacement et vitesse des ondes de love	80
II.2.2.1-Ondes de Rayleigh (R).	81
II.2.2.2-Ondes de love.	82
II.3-Phénomènes liés à la propagation des ondes sismiques	83
II.3.1-Réflexion et réfraction.	83
II.3.2-Réfraction sismique.	85
II.3.3-Diffraction.	86
II.3.4-Atténuation.	86
II.3.4.1-Mécanismes de l'atténuation.	95
II.3.4.2-Quelques facteurs physiques qui affectent l'amplitude en dehors de l'atténuation	98
II.4-Vibrations propres de la terre	100
Encadré II.3-Vibration d'une tige et d'une sphère élastique	102
Chapitre III : Paramètres fondamentaux des séismes	
III.1-Mesure de l'importance d'un séisme	108
III.1.1-Magnitude d'un séisme	109
III.1.2-Relation entre la magnitude et l'énergie d'un séisme	115
III.1.3-Intensité d'un séisme	119
III.1.4-Epicentre macrosismique, isoseistes et pleistoseites	123
III.1.5-Relation entre l'intensité et la magnitude	124
III.1.6-Relation entre l'intensité, l'accélération et la vitesse	
de vibration du sol	126
III.2-Foyer séismique	130
III.3-Foyer: source d'ondes séismiques	
Encadré III.1 Propriétés des ondes séismiques	

III.4-Failles séismogéniques, mécanismes au foyer	152			
III.5-Classification des failles				
Chapitre IV : Etude de la structure du globe terrestre pas les				
ondes de volume				
Encadré IV.1 Masse et moment d'inertie de la terre	176			
Encadré IV.2 Calcul de la densité dans les couches				
homogènes de la terre	186			
Encadré IV.3 Hodochrones pour les foyers superficiels	191			
Encadré IV.4 Relation entre les temps de propagation et les vitesses	194			
Encadré IV.5 Paramètres des rais dans le globe terrestre	198			
Chapitre V : prévision des séismes V.1- Précurseurs des séismes	200			
V.1.1- Méthodes séismiques				
V.1.1- Nethodes seismiques				
V.1.1.2- Fréquence des séismes				
V.1.1.3- Les contraintes accumulées.				
V.1.1.4- L'accalmie séismique (quiescence)				
V.1.1.5- Pente du graphe de la fréquence des séismes				
V.1.1.6- Précurseurs Sigma.				
V.1.1.7- Migration des épicentres et des hypocentres				
V.1.1.8- Petits séismes précurseurs				
V.1.1.9- Variation des caractéristiques intégrales du flux séismique				
V.1.1.10- Variation du mécanisme au foyer				
V.1.1.11-Variation de la composition fréquentielle				
des vibrations séismiques	220			
V.1.1.12- Variation des contraintes	220			
V.1.1.13- Variation du paramètre C	221			
V.1.1.14- Variation des caractéristiques du code des ondes	223			
V.1.1.15- Méthodes combinées de recherche des				
Précurseurs des séismes	223			
V.1.1.16- Variation de la vitesse des ondes séismiques	224			
V.1.2- Déformations	225			
V.1.2.1- L'observation géodésique par satellite	226			

V.1.2.2- Déplacement par rupture	226
V.1.2.3- Observations deformagraphiques	228
V.1.2.4- Observations pendagemetriques	228
V.1.2.5- Précurseurs gravitationnels	228
V.1.2.6- Variation des contraintes	229
V.1.2.7- Précurseurs hydrodynamiques	229
V.1.3- Précurseurs électromagnétiques	230
V.1.3.1- Variations des champs électrotelluriques dans les mines	233
V.1.3.2- Variation du champ électrotellurique avant les séismes	233
V.1.3.3- Electicité atmophérique	234
V.1.3.4- Variation de la resistivité électrique des roches	234
V.1.3.5- Emission électromagnétique	236
V.1.3.6- Précurseurs gémagnetiques	237
V.1.4- Précurseurs géochimiques	240
V.1.5- Facteurs cosmiques.	241
V.1.6- Emission nocturne de l'atmosphère supérieure	243
V.1.7- Précurseurs hydrométéorologiques	244
V.1.8- Précurseurs biologiques	247
V.2- exemple de modélisation des séismes(le seismic gap)	253
V.3- lois d'apparition des précurseurs des séismes	266
V.3.1- Distance épicentrale, durée des précurseurs	
et magnitude des séismes	266
V.3.2- Déformation de l'écorcetterrestre	274
V.3.3- Lois de variation de la résistivité électrique	
de l'écorce terrestre avant les séismes	275
V.4- Méthodes de prévision des séismes	280
V.4.1- Prévision à long terme	280
V.4.2- Prévision à moyen terme	286
V.4.2- Prévision à court terme	291
Annexes	297
Exercices.	
Réponses.	
Bibliographie	
Résumé en Arabe ملخص	355