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Cet ouvrage tout-en-un propose aux étudiants de 2" année

MB MP* un cours complet ainsi que de nombreux exercices

et problèmes intégralement résolus.

l rn cours complet et conforme au programme

o Toutes les notions sont abordées dans le strict respect

des programmes.
o 19 chapitres d'algèbre, d'analyse et de géométrie.

I O" nombreux exercices d'entraînement extraits des
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. Chaque chapitre propose un grand nombre d'exercices'

o Les énoncés sont extraits des derniers concours basés

sur les nouveaux Programmes.

I toutes les solutions détaillées :

Les solutions détaillées de tous les exercices sont regroupées

en fin dbuvrage.
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